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The longitudinal space charge and resistive wall impedances have been investigated in a smooth cylindrical
beam pipe. At any point from the beam axis, we obtained an expression for the total impedance, which at the
beam surface =a for infinite pipe wall conductivity gives the expression for the total impedance that was
derived by Zotter and Kheifets in studying the impedance of uniform beams in concentric cylindrical wall
chambers, when a single cylindrical chamber is considBedlV. Zotter and S. A. Kheifetdmpedances and
Wakes in High-Energy Particle Acceleratdi@/orld Scientific, Singapore, 1998Chap. §. A fitting formula
for the space-charge impedance at the beam surfaea)(, which is valid for arbitrary wavelengths, is given.
Rather than calculating the impedance with the field on the[driseph J. Bisognanbifth European Patrticle
Accelerator ConferencéEPAC90, edited by S. Myers, A. Pacheco, R. Pascual, Ch. Petit-Jean-Genaz, and J.
Poole(Institute of Physics, Bristol, 1996Vol. 1, p. 32§, the fitting formula is obtained by averaging over the
transverse beam distribution. We also give another approach for the calculation of the resistive wall impedance
using the flux of the Poynting vector at the pipe wall and then compare it with the expression obtained from the
volume integral over the beam distribution.
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[. INTRODUCTION characteristic impedance of a TEM wave is unique. The TE
and TM waves, however, do not have a uniquely defined
The term impedance was first used by Heaviside in thevoltage and current, so the characteristic impedance for such
19th century to describe the complex ratio of voltage to curwaves may be defined in various ways. At microwave fre-
rentV/I in ac circuits consisting of resistors, inductors, andguencies the measurement of voltage or current is difficult
capacitors, see Refl]. In the 1930s, Schelkunoff recog- (or impossible, unless a clearly defined terminal pair is
nized that the impedance concept could be extended to ele@vailable. Such a terminal pair may be present in the case of
tromagnetic fields in a systematic way and noted that imped! EM-type lines(such as coaxial cable, microstrip, or strip-
ance should be regarded as characteristic of the type of fieli€), but does not exist for non-TEM lingsuch as rectan-

as well as of the mediurfil]. The concept of impedance 9ular, circular, or surface waveguided]. _
forms an important link betweefield theoryand circuit | The.concept of coupling 'mp.e‘?'aﬂce n accelerators.’ which
is equivalent to the characteristic impedaritg was first

introduced for the studies of instabilities in the ISR at CERN
ﬁS,G]. In the design of accelerators it is desired to reduce the
. .coupling impedance of the beam to its environment in order
the particular type of waves. Transverse electromagnen?o prevent beam instabilities. Concerning the longitudinal
waves(TEM), transverse magnetic wav€sM), and trans- 4y namics of charged particle beams there are two important
verse electric wavesTE) each have different wave imped- v sical quantities, the longitudinal space charge, and the
ances Zrev,Zrv,Z7e), Which may depend on the type of yesistive wall impedance$6—14. A coasting beam of
line or guide, the material, and the operating frequency. Theharged particles excites electromagnetic fields in its envi-
intrinsic impedance of a particular medium= \u/€ is de-  ronment. Depending on the coupling of the beam to its en-
pendent only on the material parameters of the medium, butironment at a particular frequency, periodic excitations oc-

electric and magnetic field,=E,/H; are characteristics of

is equal to the wave impedance for plane wap\ds cur. These excitations perturb the beam dynamics and lead to
The ratio of voltage to current for traveling waves is beam instabilitieg13—22.
known as the characteristic impedarge=V/1. Since volt- The coupling impedance of straight, uniform beams in a

age and current are uniquely defined for TEM waves, theoncentric, cylindrical vacuum chamber, whose walls consist
of many layers of different materials was treated by Zotter
and Kheifets[7,8]. We find by Zotter and Kheifets an ex-
* Author to whom correspondence should be addressed. Email agpression for the total impedance at the beam surfaea,
dress: helga@yu.edu.jo which does not give the impedance at any peoifitom the
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beam axis. Kurennoy and Wang reviewed the definition Ofvvhere Pe andf are the Charge and the current densities,

the longitudinal space-charge impedance and the correspongkspectively, which obey the following continuity equation:
ing geometry factors for smooth chambers of perfectly con-

ducting walls in the long-wavelength approximatidr®,13. pe - -
Wang et al. determined experimentally the geometry factor ot V-j=0. )
for longitudinal perturbations in a space-charge dominated
beam, and found that the geometry factor obeys the relatiopinite and infinite pipe wall conductivities will be taken into
g=2In(b/a), wherea and b are the beam and pipe radii, account as imposed boundary conditions on the electromag-
respectively{17]. netic fields excited by the beam. Assuming that the beam is
Bisognano has recently investigated solitary waves imoving in a cylindrical pipe of radiu® with a constant
nonrelativistic particle beal”r{93] A fitting formula for the |ongitudina| Ve|ocity5:[802 a|0ng thez axis, we represent
ratio of the Fourier-transformed potential and density wasts charge and current densities by the following relations:
proposed, which is exactly the expression for the geometry
factor of the longitudinal coupling impedance of a pipe of pe(F,1)=pc(r)8(z—ut), (4)
infinite wall conductivity. The factor
J(F,1)=pe(F,1)u=pc(r) Bco(z—vt)Z, (5
1+2log(b/a)
1+ (K2a2/4)[1+2 log(b/a)] wherepg(r) is an axially symmetric transverse beam distri-
bution. The total charg® associated with the charge distri-

in Bisognana's fitting formula, that was used by RumoloPutionpe(r,t) in Eq. (4) is
et al. to fit the space-charge impedance for all wavelengths a
Q=2Wf

[22], needs some modifications when calculating the imped-

ance by averaging over the transverse beam distribution

rather than using the field on the axis, and when accountin% ) . L

for relativistic effects. pon Fourier transformation of Eq1l) and Eq.(2) in time,
In this paper we present the calculation of both the spac¥/€ 9€t

charge and the resistive wall impedances for all wavelengths

and give expressions for the corresponding generalized andy2gr z )+

pe(r)rdr.
0

N

>

B(r,z,w)=— uoBCV X[Zp.(r,z,0)],

2 €

approximate geometry factors. For nonrelativistic particle c
beams with a finite size, these physical quantities are of im- (6)
portance for the longitudinal beam dynamics and for the lon- )
gitudinal beam instability analysis. V2E(r,z,0)+ w—zé(r 2, )
The paper is organized as follows: In Sec. Il we present w c "

the derivation of the electromagnetic fields in a beam pipe of
both infinite and finite wall conductivities. In Sec. Ill we =| —ipowBcz+ i§ po(1,2,0). 7
calculate the space-charge impedance for a pipe of infinite €0

wall conductivity and give a fitting formula with some values o o
for the fitting parameters of the corresponding generalizeJhe Fourier time-transformed charge and current densities in
geometry factor. In Sec. IV we calculate, in a consistent wayEds- (6) and(7) are
the space-charge and resistive wall impedances for a pipe of

finite wall surface impedance, and then confirm our expres- = @ ik,z
; o . e pe(r.z,) ez, ()
sion for the resistive wall impedance by recalculating it from B
the flux of the Poynting vector over a closed surface sur- _ s
rounding the beam. In Sec. V, we present our numerical J2(r,z,0)=pc(r)e"#, 9

analysis, and finally in Sec. VI our conclusions. ] )
where w=Kk,v has been used ardg is the wave number in

the direction of beam propagation.
Il. ELECTROMAGNETIC FIELDS IN A CYLINDRICAL As a consequence of the Fourier transformation, the fields
PIPE will have the samez dependence as the time-transformed

Upon using Faradays and Amperes laws, the wave equ&PUrce®c(r,z,w) andj(r,z,») such that
tions satisfied by the magneti® and electrict fields are E(r.z,0)=E(r,w)e*?, (10)

2R - - .
%%:_Moﬁxi @ B(r,z,0)=B(r, )z (11)
Adopting cylindrical coordinates the only nonvanishing ex-
cited field components by the beam in the cylindrical pipe
= po—+ , ) due to the rotational symmetry ak(r,w), E,(r,»), and

at €0 Bg(r ,(,!)) .
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For a uniformly charged thin disk of radi@sand charge
Q, the density distribution in the transverse direction is

Q
Pc(f)=ﬁ,

wherea is the beam radius. Introducing ?=1— 82, the
field components obey the following equations:

. k,
@ 1d k|[Ee ' Ta? egy?Be
W-l-ra——z E,—(r,w) = 0
Y By(r,o)

12

The general solution for thecomponent of the electric field
is

Allo(Ur)+A2K0(Ur), r>a
BT, 0)= 0 _, 13
A3|o(0r)—|m, r<a

whereo=k,/y=wl/Bcy, andl, andK, are modified Bessel
functions of first and second kind, respectively, and A,,
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1+

[ 2
z oy 0] 0s= noo,,

(14

m

wherea,, is the wall conductivity and; is the skin depth.
Further, we assume thay is very small compared with the
wall thickness. At the surface, a surface current exists and
the relation between this current and the electric field tangent
to the surface is

>

Ei=Zmis=ZmAXH. (15)

The fieldE, in Eq. (15) is confined essentially to within the
skin depthé; of the conducting medium forming the bound-
ary surface. The numerical work required to find the propa-
gation constants and the fields of the guide modes is a te-
dious job when the waveguide is bounded by a finite
conducting medium. Fortunately, the perturbation that the
finite conductivity of the bounding surface introduces into
the problem under consideration is usually small. This allows
application of a boundary-condition perturbation to obtain an
estimate of the effect of the finiteness of the conductivity of

andA; are constants to be determined by the boundary corthe bounding surface. The corresponding impedance bound-

ditions.

To account for large but finite pipe wall conductivity, an

ary condition at the bounding pipe wall is given in E45).
Upon using the continuity conditions &, andB, at r

impedance boundary condition will be used instead. The me=a, as well as the boundary condition of a finite conductiv-

tallic surface exhibits a surface impedangg with equal
resistive and inductive parts given by

ity or finite surface current density at the pipe wa# b, the
excited fields become

ks Dqli(oa)lg(ar)—il(ca)Kg(or), r>a
¢(r,z,w)=L ) 1 , (16)
ma€eyyYK,BC | Dyly(oa)lo(or)+i Kl(aa)lo(ar)—g, r<a
ik.z Dlll(o'a.)lo(o'r)_“1((Ta)K0(O'r), r>a
E,(r,z,w)= Qe— ) 1 , (17
WaEOF),BC Dlll(O'a)Io((Tr)+| Kl(O'a.)Io((Tr)_g, r<a
. Qé* [Dily(ga)ly(or) +il(ga)Ky(oT), r>a
Bo(r2,0) = 1 e | Dyl y(oa) (o) +iK (o)l (or), r=a 18
B . QeikZZ Dlll(a'a)ll((rl’)+||1(0'a)K1(0'I’), r>a
Er(r2,0) =1 e B | Duly(oa)l (or)+iK (0a)l (or), r=a’ 19

whereD; is given by

_(ByZmlcuo)Ki(ab) +iKo(ab)
Y lo(ob) +i(ByZm/cpo)li(ab)

(20

The fields for a pipe of infinite wall conductivity,,— >, are
obtained by substitutioZ ,=0 in the above equations. For
an ideal conductor with Z,,=0, we have D,
=i[Ko(ab)/lo(ab)] and the electric-field component tan-
gential to the pipe surfacgé, vanishes identically at=b.
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IIl. LONGITUDINAL IMPEDANCE FOR A WALL 442
OF INFINITE CONDUCTIVITY Jexacl @,0,K;,8) = kTaZ[l_ZI 1(0’&)[ K,(oa)
z

Assuming a linear media such thatnd x are indepen- b
dent of E andH, then the Maxwell's equations in the pres- Ko(ab) |1(aa)}

ence of both an electricJ{) and a fictitious magnetic(,) lo(ob)

current density become] whereZy= g/ eq=377.0Q) is the vacuum impedance and
g(a,b,k,,B) is the generalized geometry factor. The total
longitudinal impedance for a pipe of an infinite wall conduc-
. . . tivity and of a smooth surface is a negative imaginary con-

VXH(F,w)=—iweE(F,w)+ I, o), (22 stant.

We approximate the geometry factor in EQ7) by the

Whereje and jm are measured in A/fmand V/n?, respec- following fitting formula:
tively. In calculating the coupling impedance for a beam pipe

, (27)

<
M

X (F,w)=iuwﬁ(F,w)—jm(F,w), (21)

with a small hole in its perfectly conducting wall, we have ZPPP" w) = —in xoQapprod ,0.k;, B), (28
both the electric and the magnetic wall boundary conditions. g
The electric wall boundary condition correspondsjpo=0 Gapprok @,0,k;,8) = o (29

o . e 1+y?n?a?’

and a vanishing tangential electric field on the wall of the

beam pipeE,(r=b)=0. On the other hand, the tangential b a

component of the magnetic field vanishes at the magnetic Jo=Xt+2 Ioga, a=sg \/g—o. (30)

wall region Whereje=0. Such a magnetic wall boundary

does not really exist in practice, but may be approximated b¥isognano proposed a fitting formula for the expression of

a corrugated surface. the ratio of the potential to the density, which is exactly our
Multiplying Eq. (21) by H* and the complex conjugate of expression for the geometry factor of the longitudinal cou-

Eqg. (22) by E, and then integrating them over the voluMe pling impedance of a pipe of i'nfini.te wall condggtivity in Eq.

containing the sources yields (27 [23]_ when we substitute in Bisognano’s fitting formula

v=1. It is found that the factor

f d3x(E-J* + H* -jm):iwf d3x(u|H|?— €*|E|?) 1+ 2 log(b/a)
v v 1+ (K2a%4)[1+2 log(b/a)]

B j dS (ExH*). (23)  in Bisognano’s fitting formula is to be replaced by the factor
° gappro>(a1b,kzyﬁ) in Eq. (29).

Since we have a smooth cviindrical beam pioe with no mads Transforming Bisognano’s factor into the laboratory
: W v yinari pipe wi gf{ame by the usually used replacement of the wave number

netic currents, the coupling impedance is defined in terms A b 1 . . o
, i , by k¥, will not fit the exact expression in E€R7) (see
the total work done by the fields as follows: Fig. 5. Rather than calculating the impedance with the field

1 . . on the axis, for which the paramete#2 log(b/a) usually is
Zu(f,w):$J' d*r'E(F,0)- I3 (7, 0) used, we calculated the impedance by averaging over the
Vbeam transverse beam distribution and therefore, we find the best

1 fit by introducing the two parameterd0<x=<0.5) andy.
= azf dr'ELr',z,0)j*(r',z,0). (24  The fitting parametey changes with changing the beam pipe
Vbeam geometry and is strongly dependent on the beam enggy

Using Jo=j(r,z,w)=(Q/ra?)e'*Z and Z,,=0, the imped-

ance at any point<a from the beam axis for a pipe of
infinite wall conductivity is

IV. TOTAL IMPEDANCE FOR FINITE WALL
CONDUCTIVITY

Upon substituting the electric field,(r,z,w) from EQq.

—j 2
Z(r,w)= 2—|L r_2_ ﬂ|1(gr)( K,(oa) (17) into Eq.(24), the total longitudinal coupling impedance
ma'eokzpelac a at any pointr<a of a pipe of finite wall conductivity is
Ko(ob) oLr
|o(0’b) |1(0'a)] ) (25) Z”(r,w):m Dlll(g-a)|1(o-r)

where L=27R is the ring circumference. Introducing the

r
harmonic numben=k,R and xo=Z,/287% Eq. (25 atr +i| Ka(oa)ly(or) = 52 (31)
=a becomes
At the beam surface=a, the total impedanc&(r=a,w)
Z(r=a,w)=Z(®)=—inxo0exacdk @,0,k;,8), (26) =Z,(w) in Eq.(31) reduces into
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_ L therefore EQq.(37) reduces into the well-known expression
Z(w)=—i m for the resistive wall impedance of ultrarelativistic particle
0%z beams7,14].

We now introduce another approach for calculating the
resistive wall impedance using the flux of the Poynting vec-

X{l_ZI1((Ta)[K1(O'a.)_|D1I1(O'a)]}

— (1—2| (ca) tor at the pipe wall. The axial component of the electric field
ma’eyk,BC ! at the pipe wall gives rise to a Poynting vector component
directed into the pipe wall. This accounts for a power loss in
x| K, (oa) KO(Ub)l (oa) the pipe wall, which we express in terms of the coupling
! lo(ab) 't impedance defined as follows:
2L1%(0a) Ko(ob) S(r=b,w)
- - i w — !
malegk e | 1 To(ab) ) Ai(w)=2mbl =
=2"w) +Z](). (32 2mbL

=?—[Ez(r=b,w)H§(r=b,w)]. (38)

The first term on the right-hand side of E§2) is the space-
charge impedance for a perfectly conducting pipe wall,ypon using Eqgs(17) and(18) we find the following expres-
whereas the second term accounts for the resistive wall iMsjons for the flux of the Poynting vector at the pipe wall (
pedance when the pipe wall has a large but finite surface ) and for the corresponding resistive wall impedance:

impedance. For a perfectly conducting wall wiit),— o or

Z.—0, we haveD;=i[Ky(ob)/lo(ab)], and the second
term on the right-hand side of E(B2) vanishes, and the total

impedance reduces into E@5).
Upon substitution forZ,, from Eq. (14) and usingn
=k,R, the resistive wall impedancg"(w) becomes

Z"(0)=R"(0)+ix" (), (33

4(oa) ?13(oa)

[15(ob)—2aly(ab)l,(ob)+2a?1%(ab)]’
(34)

R"(@)=Rg

X" (@)
4(oa) ?l5(ca)lo(ab)—2ali(ab)]
~ X0 (ob)[12(ob)— 2al o(ab) 1 (ob) + 2221 2(0b)]’
(35

NZofB s

Ry=xog=————, 36
0= Xo 2\/ﬁb (36)

where R, and y, are the components of the resistive wall

impedance in the long-wavelength limit, ands:

= 2lpqwqo,, is the skin depth at the revolution frequency

wo=BCc/R, anda= Byl noo 6= (B2yI2)k,5s.

2
S(r=b,w)=— Q

mb%0,, 6s0%a®

12(ca)(1+i)
12(ob)—2al(agb)lo(ob)+2a%1%(0b)’
(39

X

Z"(w)=(1+1)

bo,
412(oa)lo%a®
X
15(ab)—2al(ab)lo(ab)+2a%1%(ob)’
(40)

whereR is the ring radius. Usin@ o= uoc andn=Kk,R the
resistive wall impedance in E¢40) becomes

ZoBSy(1+i
2 ()= L2
4[1%(oa)lo?a?]
15(ob)—2al(ab)lg(ob)+2a?1%(ob)

(41

X

Introducing 8% = \2/uowqo,, as the skin depth at the revo-

For very smalla values corresponding to the condition |ution frequency and using<1, Eq.(41) becomes

k,6s<2/B8%vy, which mostly satisfied, the resistive wall im-

pedance becomes
nZyBs: 4l2(oa)
2\nb o?a’l s(ob)
NZyB 5% -
2ynb ~

ZM(w)=~(1+i)

=(1+1i) 37)

nZoBst 4l%(oa)
2y/nb o?all3(oh)’

We see that the real and imaginary parts of the resistive wall
impedance in Eq(40) are equal. Contrary to the Poynting
vector approach, the components of the resistive wall imped-
ance are generally not eqyake Eqs(34) and(35)] accord-

ing to the general approach based on the impedance defini-

ZM(w)=~(1+i) (42

whereg™ is an effective resistive wall geometry factor. In tion in Eq. (24). For small« values such thak,5,<2/8%y

the relativistic limit ,—0 we havel,(oa)=0.50a and

they do become approximately equal.
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FIG. 1. Space-charge impedance seen by the beamafor FIG. 3. Exact(solid line) and approximatédotted line coupling
=0.2, o,=%, L=20m, b=0.314m, and3=0.9481. The dots impedance according to Eq&6) and (28) for a=0.%, o,=°,
come from the numerical simulation withaTrIC, the solid line  L=20m, b=0.1m, and8=0.948. Fitting parametey=/0.13.
comes from Eq(28).

V. NUMERICAL ANALYSIS
The power flow across the pipe surface is the sum of the

conduction loss in the wallR,) and the difference between  We have evaluated the space-charge impedance seen by
the power stored in the magnetic and electric fieldsth® beam using theaTriC code, and we have compared it

[2i w(W,,—W.)] [2] with the fitting formula given in Eq(28). In the simulations,
mooe ' we have let a bunch containing *0protons evolve over
P=2i w(W,,— W)+ P, . (43) about 10us with no voltage applied. The only force on the

beam particles comes from the space charge, and it is evalu-
For a perfectly conducting wall the power flow across theated at each time step in the beam rest frame by solving the
pipe surface vanishes, sinég =0 and the average electric Poission equation on a grid of 20482 cells(2048 longitu-
and magnetic energies associated with a given mode afinal cells and 32 radial cells, since we assume a cylindrical
equal,W,,=W,. The physical reason for the appearance ofSymmetry for our system beam perfectly conducting pipe
the second term i™(w) in Eq. (35) is due to the fact that T0 transform the result of our computation into the lab
the resistive wall impedance in E¢33) was evaluated by frame, we have to scale down the electric field of a fagtor
integrating over the transverse beam distribution, and thereand stretch its harmonic content of a facfoiThe bunch has
fore it accounts for the difference between the power storeeen modeled as an ensemble of Ifacroparticles. The

in the magnetic and electric fields, which is not the casémpedance has been calculated in the following way: we
when eva|uating the resistive wall impedance using the Va|u@ave first taken the ratio between the Fourier transform of the

of the pointing vector at the wall of the pipe. Férs,  Self-induced field and the beam current spectrum at different
<2/B?y, the stored power in the magnetic and electric fieldssubsequent instants spaced by a constant number of time

are nearly equal and therefore, the resistive wall impedancéteps(one time step is\t=100ns), and then we have aver-
can be approximated by the expression in &d). aged the result over all of them in order to reduce the fluc-

tuations due to statistical noise. As expected, the resulting

100 T T T T T T T T T
2500 T ) T T T T T T T

2 - —
m 222 o
60 8]

1500

40
1000

20

500

0 L L 1 1 1 1 1 I“\‘ .
0 100 200 300 400 500 600 700 800 900 1000 0 L T

n=kR 0 100 200 300 400 500 600 700 800 900 1000
n=kR

FIG. 2. Space-charge impedance seen by the beamafor
=0.20, o,=°, L=20m, b=0.1m, andB3=0.9481. The dots FIG. 4. Exact(solid line) and approximatédotted ling coupling
come from the numerical simulation withaTRIC, the solid line  impedance according to Eq&6) and (28) for a=0.%, o,==,
comes from Eq(28). L=20m, b=0.1m, and@=0.155. Fitting parametey= /0.25.
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FIG. 5. Exact(solid line) and approximatdlong dashed ling . .
coupling impedance according to Eq86) and (28) for a=0.2, FIG. 6. Re_sm_tlve wall geometry factor agcordlng to B2y) for
B=0.948(solid line) and B=0.155(dashed lingfor a=0.20, o,

oy=%, L=20m, b=0.1m, and 8=0.948. The upper short- o)
dashed line gives the coupling impedance according to the modified 10°(@m) ™%, L=20m, ando=0.1m.
Bisognano formula in Eq44). Fitting parametey = /0.21. _ o ) _

tion. The fitting parametex is found to have a fixed value
impedance has a dominant imaginary component, whered&=0-5) for all radiia andb and for any value of5, as
its real part is pure fluctuation around the zero level. expected[10,13, whereas the parametgr changes with

In Figs. 1 and 2, we have plotted the reactance over th€hanginga andb or g. _

harmonic number as a function of the harmonic number, as is_Accounting for the averaging over the transverse beam
customary when referring to beam stability. The energy ofistribution and transforming into the laboratory frame sug-
the protons is 2 GeV, and the bunch is 10-m long over §€sts the use of the following modified Bisognano formula in
circumference length of R=20m. Beam radius and pipe (e lab frame:
radius have been chosen to &e0.2o m andb=0.314m,
respectively, for the simulation that relates to Fig. 1, and
=0.2b m andb=0.1m, respectively, for Fig. 2. In this way,

the ratiob/a=5 stays constant, which means that there is no Fia 5 h lotted th d . i
difference in the macroscopic structure of the seh‘-inducecln Ig. 5 we have plotted the exact and approximate coupling

electric field between these two cases, but the spectral COpredance according to Eg®6) (solid line) and(28) (long

tents are obviously different. Taking a look at Figs. 1 and 2dashed lingfor a=0.2, ¢, =, L=20m, b=0.1m, and

we immediately see that the agreement between the modifie@: 0.948. The upper short—dashgq Iing gives the couplir)g
fitting formula in Eq.(28) for the space-charge impedance impedance according to the modified Bisognano formula in

and the numerically evaluated one is excellent. Eq. (44). From Fig. 5, we immediately see the discrepancy
In Figs. 3-5 we plotted the impedance per harmonic numbPetween the result of our computation and the Lorentzian

berZ,(w)/n according to the exact and approximate expresprOfIIe predmlted by B!sognano. . .

sions in Egs.(26) and (28) as functions of the harmonic The resistive wall impedance also has been investigated

numbern=k,R for various beam pipe parameters. We Seeusing the volume integral of the energy density over the

from these figures an excellent agreement between the exalgnsverse ber_;\m distributiqn and the flux of the Poynti_ng
and the fitting formulas. vector at the pipe wall. In Figs. 6 and 7 we plotted the resis-

A fitting formula for the ratio of the Fourier-transformed V€ Wall geometry factor and resistive wall impedance per

potential and charge density was proposed by Bisognanosiparmonic nEmber according_to E@7) for_ $=0.948(solid
investigating solitary waves in nonrelativistic particle beamsne) and 3 =0.155 (dash_edolénh reg;iect|v_ely. We use the
[23]. This ratio is exactly the expression for the geometryparametersa—OQb, oy =10°(Qm)"7, L=20m, andb

factor in Eq.(27) for the longitudinal coupling impedance of —0-1M. We see tha™(w)/n is very small compared with
a pipe of infinite wall conductivity. The factor the space-charge impedance, and it is larger for relativistic

particle beams.

9o

b
g= m, 0o=0.5+2 |Oga (44)

1+ 2 log(b/a)
1+ (kZa?/4)[1+2 log(b/a)]

VI. CONCLUSIONS

In this paper, the longitudinal space-charge and resistive
in Bisognano's fitting formula was used by Rumabal.to  wall impedances have been investigated in a smooth cylin-
fit the space-charge impedance for arbitrary wavelengthdrical beam pipe. In Sec. II, the derivation of the excited
[22]. Itis found that the proposed fitting factor is replaced byelectromagnetic fields in a beam pipe of both infinite and
the factor given in Eq(29). Rather than using the field on finite wall conductivities has been presented. In Sec. I, the
the axis, Eq.(29) gives theg factor when calculating the space-charge impedance for a pipe of infinite wall conduc-
impedance by averaging over the transverse beam distribtivity has been calculated, and a fitting formula with some
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1 L wall conductivity Z,,=0), the expression for the total im-
pedance in Eq(31) reduces into the expression that was
gjﬁ@io_s L 4 derived by Zotter and Kheifets in studying the impedance of

uniform beams in concentric cylindrical wall chambers,
when a single cylindrical chamber is considef&dl
A fitting formula for the space-charge impedance at the
beam surfacer(=a) and for a pipe of infinite wall conduc-
tivity, which is valid for arbitrary wavelengths, has been ob-
tained by averaging over the transverse beam distribution
[Egs.(28) and(29)], rather than using the field on the axis.
Accounting for the averaging over the transverse beam dis-
tribution and transforming into the laboratory frame suggests
the use of Eq(44) as a modified Bisognano formula in the
lab frame. Figure 5 shows the discrepancy between the result
- ) ) of computing the space-charge impedance using2y.and
_ FIG. 7. Resistive wall impedance per harmonic number accordy, o | grentzian profile predicted by Bisognano according to
ing to Eq.(37) for 8=0.948(solid line) and 8= 0.155(dashed ling the modified formula in Eq(44) [22,23.
fora=0.2, 0,=10° (Om)~%, L=20m andb=0.1m. L , ' : . :
w The resistive wall impedance has been investigated using
the volume integral of the energy density over the transverse
values for the fitting parameters of the corresponding geneteam distribution. An expression for the resistive wall im-
alized geometry factor have been given. For a pipe of finitqpedance, which accounts for beams of finite sizes and for
wall surface impedance, the space-charge and resistive walkbitrary velocity 8, is given in Eq.(33). In the extreme
impedances have been investigated in Sec. IV, where we alselativistic limit 8— 1, Eq.(33) reduces into the well-known
presented a second approach for recalculating the resistivexpression for the resistive wall impedance, which has equal
wall impedance using the flux of the Poynting vector at thereal and imaginary parts and is independent of the beam size
wall of the beam pipe. a. Fork,8,<2/B%y, the resistive wall impedance in E®3)
At any pointr<a from the beam axis, a general expres-can be approximated by the expression in BY). In this
sion for the total coupling impedance has been obtajeed case, the expressions for resistive wall impedance in Eqgs.
Eg. (31)]. At the beam surface=a and for a pipe of infinite  (33) and(41) become approximately equal.
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