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Analytical calculation of the longitudinal space charge and resistive wall impedances
in a smooth cylindrical pipe
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The longitudinal space charge and resistive wall impedances have been investigated in a smooth cylindrical
beam pipe. At any point from the beam axis, we obtained an expression for the total impedance, which at the
beam surfacer 5a for infinite pipe wall conductivity gives the expression for the total impedance that was
derived by Zotter and Kheifets in studying the impedance of uniform beams in concentric cylindrical wall
chambers, when a single cylindrical chamber is considered@B. W. Zotter and S. A. Kheifets,Impedances and
Wakes in High-Energy Particle Accelerators~World Scientific, Singapore, 1998!, Chap. 6#. A fitting formula
for the space-charge impedance at the beam surface (r 5a), which is valid for arbitrary wavelengths, is given.
Rather than calculating the impedance with the field on the axis@Joseph J. Bisognano,Fifth European Particle
Accelerator Conference~EPAC96!, edited by S. Myers, A. Pacheco, R. Pascual, Ch. Petit-Jean-Genaz, and J.
Poole~Institute of Physics, Bristol, 1996!, Vol. 1, p. 328#, the fitting formula is obtained by averaging over the
transverse beam distribution. We also give another approach for the calculation of the resistive wall impedance
using the flux of the Poynting vector at the pipe wall and then compare it with the expression obtained from the
volume integral over the beam distribution.

DOI: 10.1103/PhysRevE.63.026503 PACS number~s!: 29.27.Bd, 29.20.2c, 47.27.Vf, 85.30.Fg
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I. INTRODUCTION

The term impedance was first used by Heaviside in
19th century to describe the complex ratio of voltage to c
rent V/I in ac circuits consisting of resistors, inductors, a
capacitors, see Ref.@1#. In the 1930s, Schelkunoff recog
nized that the impedance concept could be extended to e
tromagnetic fields in a systematic way and noted that imp
ance should be regarded as characteristic of the type of
as well as of the medium@1#. The concept of impedanc
forms an important link betweenfield theory and circuit
theory @2,3#.

Wave impedances defined by the ratio of the transve
electric and magnetic fieldsZw5Et /Ht are characteristics o
the particular type of waves. Transverse electromagn
waves~TEM!, transverse magnetic waves~TM!, and trans-
verse electric waves~TE! each have different wave imped
ances (ZTEM ,ZTM ,ZTE), which may depend on the type o
line or guide, the material, and the operating frequency. T
intrinsic impedance of a particular mediumh5Am/e is de-
pendent only on the material parameters of the medium,
is equal to the wave impedance for plane waves@4#.

The ratio of voltage to current for traveling waves
known as the characteristic impedanceZc5V/I . Since volt-
age and current are uniquely defined for TEM waves,
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characteristic impedance of a TEM wave is unique. The
and TM waves, however, do not have a uniquely defin
voltage and current, so the characteristic impedance for s
waves may be defined in various ways. At microwave f
quencies the measurement of voltage or current is diffic
~or impossible!, unless a clearly defined terminal pair
available. Such a terminal pair may be present in the cas
TEM-type lines~such as coaxial cable, microstrip, or stri
line!, but does not exist for non-TEM lines~such as rectan-
gular, circular, or surface waveguides! @4#.

The concept of coupling impedance in accelerators, wh
is equivalent to the characteristic impedanceZc , was first
introduced for the studies of instabilities in the ISR at CER
@5,6#. In the design of accelerators it is desired to reduce
coupling impedance of the beam to its environment in or
to prevent beam instabilities. Concerning the longitudin
dynamics of charged particle beams there are two impor
physical quantities, the longitudinal space charge, and
resistive wall impedances@6–14#. A coasting beam of
charged particles excites electromagnetic fields in its en
ronment. Depending on the coupling of the beam to its
vironment at a particular frequency, periodic excitations o
cur. These excitations perturb the beam dynamics and lea
beam instabilities@13–22#.

The coupling impedance of straight, uniform beams in
concentric, cylindrical vacuum chamber, whose walls con
of many layers of different materials was treated by Zot
and Kheifets@7,8#. We find by Zotter and Kheifets an ex
pression for the total impedance at the beam surfacer 5a,
which does not give the impedance at any pointr from the
d-
©2001 The American Physical Society03-1
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beam axis. Kurennoy and Wang reviewed the definition
the longitudinal space-charge impedance and the corresp
ing geometry factors for smooth chambers of perfectly c
ducting walls in the long-wavelength approximation@10,13#.
Wang et al. determined experimentally the geometry fac
for longitudinal perturbations in a space-charge domina
beam, and found that the geometry factor obeys the rela
g52 ln(b/a), where a and b are the beam and pipe radi
respectively@17#.

Bisognano has recently investigated solitary waves
nonrelativistic particle beams@23#. A fitting formula for the
ratio of the Fourier-transformed potential and density w
proposed, which is exactly the expression for the geom
factor of the longitudinal coupling impedance of a pipe
infinite wall conductivity. The factor

112 log~b/a!

11~k2a2/4!@112 log~b/a!#

in Bisognano’s fitting formula, that was used by Rumo
et al. to fit the space-charge impedance for all waveleng
@22#, needs some modifications when calculating the imp
ance by averaging over the transverse beam distribu
rather than using the field on the axis, and when accoun
for relativistic effects.

In this paper we present the calculation of both the sp
charge and the resistive wall impedances for all waveleng
and give expressions for the corresponding generalized
approximate geometry factors. For nonrelativistic parti
beams with a finite size, these physical quantities are of
portance for the longitudinal beam dynamics and for the l
gitudinal beam instability analysis.

The paper is organized as follows: In Sec. II we pres
the derivation of the electromagnetic fields in a beam pipe
both infinite and finite wall conductivities. In Sec. III w
calculate the space-charge impedance for a pipe of infi
wall conductivity and give a fitting formula with some value
for the fitting parameters of the corresponding generali
geometry factor. In Sec. IV we calculate, in a consistent w
the space-charge and resistive wall impedances for a pip
finite wall surface impedance, and then confirm our expr
sion for the resistive wall impedance by recalculating it fro
the flux of the Poynting vector over a closed surface s
rounding the beam. In Sec. V, we present our numer
analysis, and finally in Sec. VI our conclusions.

II. ELECTROMAGNETIC FIELDS IN A CYLINDRICAL
PIPE

Upon using Faradays and Amperes laws, the wave eq
tions satisfied by the magneticBW and electricEW fields are

“

2BW 2
1

c2

]2BW

]t2 52m0¹W 3 jW, ~1!

“

2EW 2
1

c2

]2EW

]t2 5m0

]W

]t
1

¹W rc

e0
, ~2!
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where rc and jW are the charge and the current densiti
respectively, which obey the following continuity equation

]rc

]t
1¹W • jW50. ~3!

Finite and infinite pipe wall conductivities will be taken int
account as imposed boundary conditions on the electrom
netic fields excited by the beam. Assuming that the beam
moving in a cylindrical pipe of radiusb with a constant
longitudinal velocityvW 5bcẑ along thez axis, we represen
its charge and current densities by the following relations

rc~rW,t !5rc~r !d~z2vt !, ~4!

jW~rW,t !5rc~rW,t !vW 5rc~r !bcd~z2vt !zW, ~5!

whererc(r ) is an axially symmetric transverse beam dist
bution. The total chargeQ associated with the charge distr
bution rc(rW,t) in Eq. ~4! is

Q52pE
0

a

rc~r !rdr .

Upon Fourier transformation of Eq.~1! and Eq.~2! in time,
we get

“

2BW ~r ,z,v!1
v2

c2 BW ~r ,z,v!52m0Bc¹W 3@zWrc~r ,z,v!#,

~6!

“

2EW ~r ,z,v!1
v2

c2 EW ~r ,z,v!

5S 2 im0vbcẑ1
1

e0
¹W D rc~r ,z,v!. ~7!

The Fourier time-transformed charge and current densitie
Eqs.~6! and ~7! are

rc~r ,z,v!5
rc~r !

bc
eikzz, ~8!

j z~r ,z,v!5rc~r !eikzz, ~9!

wherev5kzv has been used andkz is the wave number in
the direction of beam propagation.

As a consequence of the Fourier transformation, the fie
will have the samez dependence as the time-transform
sourcesrc(r ,z,v) and j z(r ,z,v) such that

EW ~r ,z,v!5EW ~r ,v!eikzz, ~10!

BW ~r ,z,v!5BW ~r ,v!eikzz. ~11!

Adopting cylindrical coordinates the only nonvanishing e
cited field components by the beam in the cylindrical pi
due to the rotational symmetry areEz(r ,v), Er(r ,v), and
Bu(r ,v).
3-2
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For a uniformly charged thin disk of radiusa and charge
Q, the density distribution in the transverse direction is

rc~r !5
Q

pa2 ,

where a is the beam radius. Introducingg22512b2, the
field components obey the following equations:

F d2

dr2 1
1

r

d

dr
2

kz
2

g2G H Ez~r ,v!

Er~r ,v!

Bu~r ,v!
J 5H i

Q

pa2

kz

e0g2bc

0

0

J .

~12!

The general solution for thez component of the electric field
is

Ez~r ,v!5H A1I 0~sr !1A2K0~sr !, r .a

A3I 0~sr !2 i
Q

pa2e0kzbc
, r<a

, ~13!

wheres5kz /g5v/bcg, andI 0 andK0 are modified Besse
functions of first and second kind, respectively, andA1 , A2 ,
andA3 are constants to be determined by the boundary c
ditions.

To account for large but finite pipe wall conductivity, a
impedance boundary condition will be used instead. The
tallic surface exhibits a surface impedanceZm with equal
resistive and inductive parts given by
02650
n-

e-

Zm5
11 i

swds
, ds5A 2

mvsw
, ~14!

wheresw is the wall conductivity andds is the skin depth.
Further, we assume thatds is very small compared with the
wall thickness. At the surface, a surface current exists
the relation between this current and the electric field tang
to the surface is

EW t5ZmjWs5Zmn̂3HW . ~15!

The fieldEW t in Eq. ~15! is confined essentially to within the
skin depthds of the conducting medium forming the bound
ary surface. The numerical work required to find the prop
gation constants and the fields of the guide modes is a
dious job when the waveguide is bounded by a fin
conducting medium. Fortunately, the perturbation that
finite conductivity of the bounding surface introduces in
the problem under consideration is usually small. This allo
application of a boundary-condition perturbation to obtain
estimate of the effect of the finiteness of the conductivity
the bounding surface. The corresponding impedance bou
ary condition at the bounding pipe wall is given in Eq.~15!.

Upon using the continuity conditions ofEz and Bu at r
5a, as well as the boundary condition of a finite conduct
ity or finite surface current density at the pipe wallr 5b, the
excited fields become
f~r ,z,v!5
iQeikzz

pae0gkzbc H D1I 1~sa!I 0~sr !2 i I 1~sa!K0~sr !, r .a

D1I 1~sa!I 0~sr !1 i FK1~sa!I 0~sr !2
1

saG , r<a
, ~16!

Ez~r ,z,v!5
Qeikzz

pae0gbc H D1I 1~sa!I 0~sr !2 i I 1~sa!K0~sr !, r .a

D1I 1~sa!I 0~sr !1 i FK1~sa!I 0~sr !2
1

saG , r<a
, ~17!

Bu~r ,z,v!52 i
Qeikzz

pae0c2 H D1I 1~sa!I 1~sr !1 i I 1~sa!K1~sr !, r .a

D1I 1~sa!I 1~sr !1 iK 1~sa!I 1~sr !, r<a
, ~18!

Er~r ,z,v!52 i
Qeikzz

pae0bc H D1I 1~sa!I 1~sr !1 i I 1~sa!K1~sr !, r .a

D1I 1~sa!I 1~sr !1 iK 1~sa!I 1~sr !, r<a
, ~19!
r

-

whereD1 is given by

D15
~bgZm /cm0!K1~sb!1 iK 0~sb!

I 0~sb!1 i ~bgZm /cm0!I 1~sb!
. ~20!
The fields for a pipe of infinite wall conductivitysw→`, are
obtained by substitutionZm50 in the above equations. Fo
an ideal conductor with Zm50, we have D1
5 i @K0(sb)/I 0(sb)# and the electric-field component tan
gential to the pipe surfaceEz vanishes identically atr 5b.
3-3
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III. LONGITUDINAL IMPEDANCE FOR A WALL
OF INFINITE CONDUCTIVITY

Assuming a linear media such thate andm are indepen-
dent ofE andH, then the Maxwell’s equations in the pre
ence of both an electric (JWe) and a fictitious magnetic (JWm)
current density become@4#

¹W 3EW ~rW,v!5 imvHW ~rW,v!2JWm~rW,v!, ~21!

¹W 3HW ~rW,v!52 iveEW ~rW,v!1JWe~rW,v!, ~22!

whereJWe and JWm are measured in A/m2 and V/m2, respec-
tively. In calculating the coupling impedance for a beam p
with a small hole in its perfectly conducting wall, we hav
both the electric and the magnetic wall boundary conditio
The electric wall boundary condition corresponds toJWm50
and a vanishing tangential electric field on the wall of t
beam pipeEz(r 5b)50. On the other hand, the tangenti
component of the magnetic field vanishes at the magn
wall region whereJWe50. Such a magnetic wall boundar
does not really exist in practice, but may be approximated
a corrugated surface.

Multiplying Eq. ~21! by HW * and the complex conjugate o
Eq. ~22! by EW , and then integrating them over the volumeV
containing the sources yields

E
V
d3x~EW •JWe* 1HW * •JWm!5 ivE

V
d3x~muHW u22e* uEW u2!

2E
S
dSW •~EW 3HW * !. ~23!

Since we have a smooth cylindrical beam pipe with no m
netic currents, the coupling impedance is defined in term
the total work done by the fields as follows:

Zi~r ,v!5
1

Q2 E
Vbeam

d3r 8EW ~rW8,v!•JWe* ~rW8,v!

5
1

Q2 E
Vbeam

d3r 8Ez~r 8,z,v! j * ~r 8,z,v!. ~24!

Using Je5 j (r ,z,v)5(Q/pa2)eikzz and Zm50, the imped-
ance at any pointr<a from the beam axis for a pipe o
infinite wall conductivity is

Zi~r ,v!5
2 iL

pa2e0kzbc F r 2

a22
2r

a
I 1~sr !H K1~sa!

1
K0~sb!

I 0~sb!
I 1~sa!J G , ~25!

where L52pR is the ring circumference. Introducing th
harmonic numbern5kzR and x05Z0/2bg2, Eq. ~25! at r
5a becomes

Zi~r 5a,v![Zi~v!52 inx0gexact~a,b,kz ,b!, ~26!
02650
e

s.

ic
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-
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gexact~a,b,kz ,b!5
4g2

kz
2a2 F122I 1~sa!H K1~sa!

1
K0~sb!

I 0~sb!
I 1~sa!J G , ~27!

whereZ05Am0 /e05377.0V is the vacuum impedance an
g(a,b,kz ,b) is the generalized geometry factor. The to
longitudinal impedance for a pipe of an infinite wall condu
tivity and of a smooth surface is a negative imaginary co
stant.

We approximate the geometry factor in Eq.~27! by the
following fitting formula:

Zi
approx~v!52 inx0gapprox~a,b,kz ,b!, ~28!

gapprox~a,b,kz ,b!5
g0

11y2n2a2 , ~29!

g05x12 log
b

a
, a5

a

2R
Ag0. ~30!

Bisognano proposed a fitting formula for the expression
the ratio of the potential to the density, which is exactly o
expression for the geometry factor of the longitudinal co
pling impedance of a pipe of infinite wall conductivity in Eq
~27! @23# when we substitute in Bisognano’s fitting formu
g51. It is found that the factor

112 log~b/a!

11~kz
2a2/4!@112 log~b/a!#

in Bisognano’s fitting formula is to be replaced by the fac
gapprox(a,b,kz ,b) in Eq. ~29!.

Transforming Bisognano’s factor into the laborato
frame by the usually used replacement of the wave num
kz by kzg

21, will not fit the exact expression in Eq.~27! ~see
Fig. 5!. Rather than calculating the impedance with the fie
on the axis, for which the parameter 112 log(b/a) usually is
used, we calculated the impedance by averaging over
transverse beam distribution and therefore, we find the b
fit by introducing the two parametersx(0<x<0.5) andy.
The fitting parametery changes with changing the beam pip
geometry and is strongly dependent on the beam energy~b!.

IV. TOTAL IMPEDANCE FOR FINITE WALL
CONDUCTIVITY

Upon substituting the electric fieldEz(r ,z,v) from Eq.
~17! into Eq. ~24!, the total longitudinal coupling impedanc
at any pointr<a of a pipe of finite wall conductivity is

Zi~r ,v!5
2Lr

pa3e0kzbc FD1I 1~sa!I 1~sr !

1 i S K1~sa!I 1~sr !2
r

2aD G . ~31!

At the beam surfacer 5a, the total impedanceZi(r 5a,v)
[Zi(v) in Eq. ~31! reduces into
3-4
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Zi~v!52 i
L

pa2e0kzbc

3$122I 1~sa!@K1~sa!2 iD 1I 1~sa!#%

52 i
L

pa2e0kzbc S 122I 1~sa!

3FK1~sa!
K0~sb!

I 0~sb!
I 1~sa!G D

1
2LI 1

2~sa!

pa2e0kzbc S D12 i
K0~sb!

I 0~sb! D
5zi

spch~v!1Zi
rw~v!. ~32!

The first term on the right-hand side of Eq.~32! is the space-
charge impedance for a perfectly conducting pipe w
whereas the second term accounts for the resistive wall
pedance when the pipe wall has a large but finite surf
impedance. For a perfectly conducting wall withsw→` or
Zm→0, we haveD15 i @K0(sb)/I 0(sb)#, and the second
term on the right-hand side of Eq.~32! vanishes, and the tota
impedance reduces into Eq.~25!.

Upon substitution forZm from Eq. ~14! and usingn
5kzR, the resistive wall impedanceZi

rw(v) becomes

Zi
rw~v!5Ri

rw~v!1 ix i
rw~v!, ~33!

Ri
rw~v!5R0

4~sa!22I 1
2~sa!

@ I 0
2~sb!22aI 0~sb!I 1~sb!12a2I 1

2~sb!#
,

~34!

x i
rw~v!

5x0

4~sa!22I 1
2~sa!@ I 0~sb!22aI 1~sb!#

I 0~sb!@ I 0
2~sb!22aI 0~sb!I 1~sb!12a2I 1

2~sb!#
,

~35!

R05x05
nZ0bds*

2Anb
, ~36!

whereR0 and x0 are the components of the resistive w
impedance in the long-wavelength limit, andds*
5A2/m0v0sw is the skin depth at the revolution frequen
v05bc/R, anda5bg/m0swdsc5(b2g/2)kzds .

For very smalla values corresponding to the conditio
kzds!2/b2g, which mostly satisfied, the resistive wall im
pedance becomes

Zi
rw~v!'~11 i !

nZ0bds*

2Anb

4I 1
2~sa!

s2a2I 0
2~sb!

[~11 i !
nZ0bds*

2Anb
grw, ~37!

wheregrw is an effective resistive wall geometry factor.
the relativistic limit sw→0 we haveI 1(sa)50.5sa and
02650
l,
-
e

therefore Eq.~37! reduces into the well-known expressio
for the resistive wall impedance of ultrarelativistic partic
beams@7,14#.

We now introduce another approach for calculating
resistive wall impedance using the flux of the Poynting ve
tor at the pipe wall. The axial component of the electric fie
at the pipe wall gives rise to a Poynting vector compon
directed into the pipe wall. This accounts for a power loss
the pipe wall, which we express in terms of the coupli
impedance defined as follows:

Zi
rw~v!52pbL

S~r 5b,v!

Q2

5
2pbL

Q2 @Ez~r 5b,v!Hu* ~r 5b,v!#. ~38!

Upon using Eqs.~17! and~18! we find the following expres-
sions for the flux of the Poynting vector at the pipe wallr
5b) and for the corresponding resistive wall impedance:

S~r 5b,v!5
Q2

p2b2swdss
2a2

3
I 1

2~sa!~11 i !

I 0
2~sb!22aI 1~sb!I 0~sb!12a2I 1

2~sb!
,

~39!

Zi
rw~v!5~11 i !

R

bswds

3
4I 1

2~sa!/s2a2

I 0
2~sb!22aI 1~sb!I 0~sb!12a2I 1

2~sb!
,

~40!

whereR is the ring radius. UsingZ05m0c andn5kzR the
resistive wall impedance in Eq.~40! becomes

Zi
rw~v!5

nZ0bds~11 i !

2b

3
4@ I 1

2~sa!/s2a2#

I 0
2~sb!22aI 1~sb!I 0~sb!12a2I 1

2~sb!
.

~41!

Introducingds* 5A2/m0v0sw as the skin depth at the revo
lution frequency and usinga!1, Eq. ~41! becomes

Zi
rw~v!'~11 i !

nZ0bds*

2Anb

4I 1
2~sa!

s2a2I 0
2~sb!

. ~42!

We see that the real and imaginary parts of the resistive w
impedance in Eq.~40! are equal. Contrary to the Poyntin
vector approach, the components of the resistive wall imp
ance are generally not equal@see Eqs.~34! and~35!# accord-
ing to the general approach based on the impedance de
tion in Eq. ~24!. For smalla values such thatkzds!2/b2g
they do become approximately equal.
3-5
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The power flow across the pipe surface is the sum of
conduction loss in the wall (PL) and the difference betwee
the power stored in the magnetic and electric fie
@2iv(Wm2We)# @2#,

P52iv~Wm2We!1PL . ~43!

For a perfectly conducting wall the power flow across t
pipe surface vanishes, sincePL50 and the average electri
and magnetic energies associated with a given mode
equal,Wm5We . The physical reason for the appearance
the second term inx rw(v) in Eq. ~35! is due to the fact tha
the resistive wall impedance in Eq.~33! was evaluated by
integrating over the transverse beam distribution, and th
fore it accounts for the difference between the power sto
in the magnetic and electric fields, which is not the ca
when evaluating the resistive wall impedance using the va
of the pointing vector at the wall of the pipe. Forkzds
!2/b2g, the stored power in the magnetic and electric fie
are nearly equal and therefore, the resistive wall impeda
can be approximated by the expression in Eq.~41!.

FIG. 1. Space-charge impedance seen by the beam foa
50.2b, sw5`, L520 m, b50.314 m, andb50.9481. The dots
come from the numerical simulation withPATRIC, the solid line
comes from Eq.~28!.

FIG. 2. Space-charge impedance seen by the beam foa
50.2b, sw5`, L520 m, b50.1 m, andb50.9481. The dots
come from the numerical simulation withPATRIC, the solid line
comes from Eq.~28!.
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V. NUMERICAL ANALYSIS

We have evaluated the space-charge impedance see
the beam using thePATRIC code, and we have compared
with the fitting formula given in Eq.~28!. In the simulations,
we have let a bunch containing 1013 protons evolve over
about 10ms with no voltage applied. The only force on th
beam particles comes from the space charge, and it is ev
ated at each time step in the beam rest frame by solving
Poission equation on a grid of 2048332 cells~2048 longitu-
dinal cells and 32 radial cells, since we assume a cylindr
symmetry for our system beam perfectly conducting pip!.
To transform the result of our computation into the l
frame, we have to scale down the electric field of a factorg2

and stretch its harmonic content of a factorg. The bunch has
been modeled as an ensemble of 106 macroparticles. The
impedance has been calculated in the following way:
have first taken the ratio between the Fourier transform of
self-induced field and the beam current spectrum at differ
subsequent instants spaced by a constant number of
steps~one time step isDt5100 ns), and then we have ave
aged the result over all of them in order to reduce the fl
tuations due to statistical noise. As expected, the resul

FIG. 3. Exact~solid line! and approximate~dotted line! coupling
impedance according to Eqs.~26! and ~28! for a50.5b, sw5`,
L520 m, b50.1 m, andb50.948. Fitting parametery5A0.13.

FIG. 4. Exact~solid line! and approximate~dotted line! coupling
impedance according to Eqs.~26! and ~28! for a50.5b, sw5`,
L520 m, b50.1 m, andb50.155. Fitting parametery5A0.25.
3-6
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impedance has a dominant imaginary component, whe
its real part is pure fluctuation around the zero level.

In Figs. 1 and 2, we have plotted the reactance over
harmonic number as a function of the harmonic number, a
customary when referring to beam stability. The energy
the protons is 2 GeV, and the bunch is 10-m long ove
circumference length of 2pR520 m. Beam radius and pip
radius have been chosen to bea50.2b m andb50.314 m,
respectively, for the simulation that relates to Fig. 1, anda
50.2b m andb50.1 m, respectively, for Fig. 2. In this way
the ratiob/a55 stays constant, which means that there is
difference in the macroscopic structure of the self-induc
electric field between these two cases, but the spectral
tents are obviously different. Taking a look at Figs. 1 and
we immediately see that the agreement between the mod
fitting formula in Eq. ~28! for the space-charge impedan
and the numerically evaluated one is excellent.

In Figs. 3–5 we plotted the impedance per harmonic nu
berZi(v)/n according to the exact and approximate expr
sions in Eqs.~26! and ~28! as functions of the harmoni
numbern5kzR for various beam pipe parameters. We s
from these figures an excellent agreement between the e
and the fitting formulas.

A fitting formula for the ratio of the Fourier-transforme
potential and charge density was proposed by Bisognan
investigating solitary waves in nonrelativistic particle bea
@23#. This ratio is exactly the expression for the geome
factor in Eq.~27! for the longitudinal coupling impedance o
a pipe of infinite wall conductivity. The factor

112 log~b/a!

11~kz
2a2/4!@112 log~b/a!#

in Bisognano’s fitting formula was used by Rumoloet al. to
fit the space-charge impedance for arbitrary waveleng
@22#. It is found that the proposed fitting factor is replaced
the factor given in Eq.~29!. Rather than using the field o
the axis, Eq.~29! gives theg factor when calculating the
impedance by averaging over the transverse beam dist

FIG. 5. Exact~solid line! and approximate~long dashed line!
coupling impedance according to Eqs.~26! and ~28! for a50.2b,
sw5`, L520 m, b50.1 m, and b50.948. The upper short
dashed line gives the coupling impedance according to the mod
Bisognano formula in Eq.~44!. Fitting parametery5A0.21.
02650
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tion. The fitting parameterx is found to have a fixed value
(x50.5) for all radii a and b and for any value ofb, as
expected@10,13#, whereas the parametery changes with
changinga andb or b.

Accounting for the averaging over the transverse be
distribution and transforming into the laboratory frame su
gests the use of the following modified Bisognano formula
the lab frame:

g5
g0

11n2/g2a2/4R2 , g050.512 log
b

a
. ~44!

In Fig. 5 we have plotted the exact and approximate coup
impedance according to Eqs.~26! ~solid line! and~28! ~long
dashed line! for a50.2b, sw5`, L520 m, b50.1 m, and
b50.948. The upper short-dashed line gives the coup
impedance according to the modified Bisognano formula
Eq. ~44!. From Fig. 5, we immediately see the discrepan
between the result of our computation and the Lorentz
profile predicted by Bisognano.

The resistive wall impedance also has been investiga
using the volume integral of the energy density over
transverse beam distribution and the flux of the Poynt
vector at the pipe wall. In Figs. 6 and 7 we plotted the res
tive wall geometry factor and resistive wall impedance p
harmonic number according to Eq.~37! for b50.948~solid
line! and b50.155 ~dashed line!, respectively. We use the
parametersa50.2b, sw5106(Vm)21, L520 m, and b
50.1 m. We see thatZrw(v)/n is very small compared with
the space-charge impedance, and it is larger for relativi
particle beams.

VI. CONCLUSIONS

In this paper, the longitudinal space-charge and resis
wall impedances have been investigated in a smooth cy
drical beam pipe. In Sec. II, the derivation of the excit
electromagnetic fields in a beam pipe of both infinite a
finite wall conductivities has been presented. In Sec. III,
space-charge impedance for a pipe of infinite wall cond
tivity has been calculated, and a fitting formula with som

ed

FIG. 6. Resistive wall geometry factor according to Eq.~37! for
b50.948~solid line! andb50.155~dashed line! for a50.2b, sw

5106 (Vm)21, L520 m, andb50.1 m.
3-7
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values for the fitting parameters of the corresponding ge
alized geometry factor have been given. For a pipe of fin
wall surface impedance, the space-charge and resistive
impedances have been investigated in Sec. IV, where we
presented a second approach for recalculating the resi
wall impedance using the flux of the Poynting vector at
wall of the beam pipe.

At any point r<a from the beam axis, a general expre
sion for the total coupling impedance has been obtained@see
Eq. ~31!#. At the beam surfacer 5a and for a pipe of infinite

FIG. 7. Resistive wall impedance per harmonic number acco
ing to Eq.~37! for b50.948~solid line! andb50.155~dashed line!
for a50.2b, sw5106 (Vm)21, L520 m andb50.1 m.
g
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wall conductivity (Zm50), the expression for the total im
pedance in Eq.~31! reduces into the expression that w
derived by Zotter and Kheifets in studying the impedance
uniform beams in concentric cylindrical wall chamber
when a single cylindrical chamber is considered@7#.

A fitting formula for the space-charge impedance at
beam surface (r 5a) and for a pipe of infinite wall conduc
tivity, which is valid for arbitrary wavelengths, has been o
tained by averaging over the transverse beam distribu
@Eqs.~28! and ~29!#, rather than using the field on the axi
Accounting for the averaging over the transverse beam
tribution and transforming into the laboratory frame sugge
the use of Eq.~44! as a modified Bisognano formula in th
lab frame. Figure 5 shows the discrepancy between the re
of computing the space-charge impedance using Eq.~28! and
the Lorentzian profile predicted by Bisognano according
the modified formula in Eq.~44! @22,23#.

The resistive wall impedance has been investigated u
the volume integral of the energy density over the transve
beam distribution. An expression for the resistive wall im
pedance, which accounts for beams of finite sizes and
arbitrary velocity b, is given in Eq.~33!. In the extreme
relativistic limit b→1, Eq.~33! reduces into the well-known
expression for the resistive wall impedance, which has eq
real and imaginary parts and is independent of the beam
a. For kzds!2/b2g, the resistive wall impedance in Eq.~33!
can be approximated by the expression in Eq.~37!. In this
case, the expressions for resistive wall impedance in E
~33! and ~41! become approximately equal.
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